1. Find the following integrals:-

(a)
$$\int \frac{dx}{x^5}$$

(b)
$$\int_{0}^{a} (ax^2 - x^3) dx$$

(b)
$$\int_{0}^{a} (ax^{2} - x^{3}) dx$$
 (c) $\int_{1}^{2} \left(\frac{2}{x^{2}} - \frac{3}{x} + 4\right) dx$

$$(d) \int \left(e^{-x} + e^{4x}\right) dx$$

(d)
$$\int (e^{-x} + e^{4x}) dx$$
 (e) $\int_{0}^{\pi/3} (\sec^2 x + \cos x) dx$ (f) $\int \frac{4}{3x+1} dx$

(f)
$$\int \frac{4}{3x+1} dx$$

2. Integrate:-

(a)
$$\int \frac{dx}{x^2 - 3x + 2}$$

(a)
$$\int \frac{dx}{x^2 - 3x + 2}$$
 (b) $\int_{3}^{3} \frac{(3x^2 + x)}{(x - 1)(x + 1)^2} dx$ (c) $\int \frac{x^2}{x - 1} dx$

(c)
$$\int \frac{x^2}{x-1} dx$$

By making suitable substitutions, or otherwise, find the following integrals:-3.

(a)
$$\int e^{-(4x+3)} dx$$

(b)
$$\int \frac{(x-1)}{\sqrt{(x^2-2x+3)}} dx$$

(c)
$$\int_{0}^{\pi/8} \sec^2 2x dx$$

(d)
$$\int_{0}^{2} (3x-1)(3x^{2}-2x)^{4} dx$$

(e) Let $u = \cos x$ to find $\int 3\cos^3 x \sin x dx$.

Find the area enclosed by the curve $y = \frac{4}{x}$, the lines y = 2 and y = 3, and the y-axis. 4.

Repeat question 4. for the curve $y = 2x^3 - 1$, the x-axis, the line y = 2, and the y-axis. 5.

The area bounded by the curve $y = 1 - \cos x$ between x = 0 and $x = \frac{\pi}{2}$ is rotated 2π 6. radians about the x-axis. Find the volume of the solid formed.

/Turn over

- 7. The area lying in the first quadrant and bounded by the curve $y = 2x^2 + 1$, the y-axis, and the lines y = 2 and y = 5 is rotated 2π radians about the y-axis. Calculate the volume of the solid formed.
- 8. An object accelerates from rest and proceeds in a straight line.

At time, t seconds, its acceleration is given by :-

$$a = 20 - 2t \text{ cm/s}^2$$

- (a) Calculate the velocity of the object after 3 seconds.
 - (b) How far did the object travel in the first 8 seconds of motion?